Measurement and modelling concentrations and dry deposition of ammonia: methods and challenges

M Twigg, E. Nemitz, M.R. Jones, M.A Sutton, C.F. Braban, E. Rowe and many other colleagues

05.10.2023

OVERVIEW

- Modelling of dry deposition of NH₃
- Measurement of dry deposition of NH₃
- Current NH₃ monitoring in the UK
- Challenges in quantifying NH₃ deposition
- Ammonia as a future fuel: some considerations

Canopy Compensation Point Model

3

Key Parameters of the Canopy Compensation Point Model

- Atmospheric resistances: easy! from micromet parameters (u_* , U, L, z_0)
- Stomatal resistance R_s : function of radiation (St, PAR), leaf water potential, RH/VPD, temperature
- Cuticular resistance R_{w} : function of leaf wetness (RH, VPD, leaf wetness measurement), leaf water composition (pH), temperature?, LAI?
- Dimensionless stomatal emission potential $\Gamma_s =$ $[NH_4^+]/[H^+]$; function of N status, plant type

ceh.ac.uk

$$\chi_{s} = NH_{3(g)} = \frac{161500}{T} \exp\left(-10,378 \ T^{-1}\right) \frac{\left[NH_{4}^{+}\right]}{\left[H^{+}\right]} = \frac{161500}{T} \exp\left(-10,378 \ T^{-1}\right) \Gamma_{s}$$

$$F_{t} = -\frac{\chi_{a} - \chi_{c}}{R_{a} (z - d) + R_{b}} \qquad \chi_{c} = \frac{\chi_{a} (R_{a} (z - d) + R_{b})^{-1} + \chi_{s} R_{s}^{-1}}{(R_{a} (z - d) + R_{b})^{-1} + R_{s}^{-1} + R_{w}^{-1}} \quad \text{ceh.ac.uk}$$

Key Parameters of the Canopy Compensation Point Model

- Atmospheric resistances: easy! from micromet parameters (u_* , U, L, z_0)
- Stomatal resistance R_s : function of radiation (St, PAR), leaf water potential, RH/VPD, temperature
- Cuticular resistance R_{w} : function of leaf wetness (RH, VPD, leaf wetness measurement), leaf water composition (pH), temperature?, LAI?

• Dimensionless stomatal emission potential $\Gamma_s =$ $[NH_4^+]/[H^+]$; function of N status, plant type

$$\chi_{s} = \mathrm{NH}_{3(g)} = \frac{161500}{T} \exp\left(-10,378 \ T^{-1}\right) \frac{\left[\mathrm{NH}_{4}^{+}\right]}{\left[\mathrm{H}^{+}\right]} = \frac{161500}{T} \exp\left(-10,378 \ T^{-1}\right) \Gamma_{s}$$

Determination of Cuticular Resistance (R_w)

• Derived as during dark (stomata closed) and windy conditions (e.g. $R_{\rm a} + R_{\rm b} < 200 \text{ sm}^{-1}$)

 $R_{\rm c} = \chi_{\rm a}/F_{\rm t} - R_{\rm a} - R_{\rm b}$

- R_w is a function of chemical properties of cuticle and leaf water layers (Flechard *et al.* 1998).
- Vapour pressure deficit (VPD) or RH is often used to determine the parameterisation of R_w (Nemitz *et al.* 2000).

Taken from Nemitz *et al.* (2004) Surface exchange fluxes of NH_3 , SO_2 , HNO_3 and HCl over a heathland. Atmos. Chem. Phys. 4, 489 - 1005.

The full squares and open circles represent block-averaged values for 50 sequential 30-min values of R_w values, sorted for h and VPD, respectively. The dashed and the solid lines show the parameterizations used to fit the measurements.

6

Impact of the chemical climate on cuticular resistance (R_w)

Taken from Nemitz, Milford and Sutton (2000). Quart. J. Royal Meteor:

Compilation of the cuticular resistance (R,) at relative humidity RH = 95%, and temperature, T = 10 "C, parametrized as a function of molar ratio of the mean SO₂ and NH₃ air concentrations. The numbers are those of the datasets used.

Note: a subsequent meta-analysis of Massa et al. (2010) considering a larger showed a more complex picture

 SO_2 likely no longer the controlling acid gas. HNO₃ and HCl have risen in relative importance.

Cuticular uptake resistance (R_w) increases at high NH₃ concentrations (saturation effect)

Ecosystem scale:

Jones et al., 2007; Concentrationdependent NH_3 deposition processes for mixed moorland semi-natural vegetation Atmospheric Environment, 41 (2007), pp. 2049-2060

For individual species response see:

Jones et al., 2007; Concentrationdependent NH_3 deposition processes for moorland plant species with and without stomata. Atmospheric Environment, 41, pp 8980-8994

Fig. 10. Relationship between NH₃ concentrations ($\mu g m^{-2} s^{-1}$) and daytime R_w (s m⁻¹) (light grey triangles) and night-time R_w (s m⁻¹) (black diamonds) for a mixed vegetation canopy.

8

Leaf surfaces respond to chemical composition and can saturate at high NH_3 levels

- F_t↓, R_{a} $R_{\rm h}$ $R_{\rm s}$ $R_{\rm w}$ F_s F_{w} ¹ χ_{s>0} $\chi_d > 0$
 - Increase in R_w or introduction of additional cuticular emission potential (χ_d)

Two examples of approaches to deal with R_w in ACTMs:

- EMEP: R_w function of annual average NH₃/SO₂ concentration ratio in air
- DEPAC (LOTOS-EUROS): *R*_w as a function of ambient NH₃ concentration (Jones et al., 2007a, b)

In both models only deposition to the cuticle is possible

NH₃ dry deposition measurement approaches

Direct measurements

- Micrometeorological methods have to fulfil requirements
 - homogenous flat terrain
 - sufficient turbulence
 - Eddy covariance 'ideal method' requires sampling of up ≥10 Hz
- Challenging under ambient conditions due to 'sticky' nature of NH₃
- Recently there now open path systems on the market to undertake direct flux measurements
- Not applicable near point sources (due to advection errors)

Indirect measurements

- Two types of concentration measurements:
 - State-of-the art high temporal resolution (20 Hz to 1 hour) at 1 location
 - Multiple sensors with low temporal resolution covering a spatial area (daily to monthly average)
 - Data from the measurements are then used to inform models:
 - Measurement model fusion approach (Concentration Based Estimate Deposition Model, CBED¹)
 - Calibration of an atmospheric chemistry transport model (UK: EME4UK)²
 - Use similar parameterisations as previously shown

¹ Smith *et al.* (2000) Regional estimation of pollutant gas dry deposition in the UK: model description, sensitivity analyses and outputs. Atmospheric Environment 34, 3757-3777

² Rowe *et al.* (2022) Trends Report 2022: Trends in critical load and critical level exceedances in the UK. Report to Defra under Contract AQ0849

Ecology & Hydrology

UK Monitoring Networks

National and international assessments atmospheric pollution and deposition to the environment

Current status of NH₃ in the UK

- Decrease in NH₃ emissions is not reflected in NH₃ concentrations
- UK moving from an acidic towards an alkaline environment
- Likelihood that R_w is increasing and more potential for desorption from the cuticle

UK Centre for

Ecology & Hydrology

Impact of NH₃ currently in the UK

• Critical levels (annual)

- >1 & ≤ 3 µg m⁻³ (lichens and byrophytes exceeded)
- > 3 µg m⁻³ (vascular plants)
- 69% of the UK is currently exceeding the critical levels for NH₃ set for lichens and byrophytes
- Areas of high concentrations of NH₃ often associated with local intensive agricultural areas

Figure 4.1: EMEP 1 x 1 km mean ammonia concentrations for 2017-19.

UK Centre for Ecology & Hydrology

Map from: Rowe *et al.* (2022) Trends Report 2022: Trends in critical load and critical level exceedances in the UK. Report to Defra under Contract AQ0849

Challenges: quantifying dry deposition to complex terrain

- Dry deposition parameterisations derived for homogeneous, flat surface
- Micrometeorological methods not applicable
- Models currently do not agree the deposition rates to complex terrain
- Expected enhancement of deposition rates to complex terrains
 - Vulnerable ecosystems to N deposition are at risk

Taken from: Cowan, N., Nemitz, E., Walker, J.T., Fowler, D., Finnigan, J.J., Webster, H.N., Levy, P., Twigg, M., Tang, S.Y., Bachiller-Jareno, N. and Trembath, P., 2022. Review of methods for assessing deposition of reactive nitrogen pollutants across complex terrain with focus on the UK. *Environmental Science: Atmospheres*.

Challenges: Comparability of NH₃ concentration measurements

ceh.ac.uk 18

Ammonia as a future fuel: some considerations

UK Centre for Ecology & Hydrology

- High concentrations are likely to significantly increased the cuticular resistance or introduce a cuticular emission potential (χ_d)
 - Leads to an increase in atmospheric lifetime due to reduction in deposition velocity
 - Further studies are required to determine if an emission potential occurs on the cuticle at elevated concentrations across different environments

Ammonia as a future fuel: some considerations

UK Centre for Ecology & Hydrology

- > Incident capability in the UK:
 - National monitoring network can help in identify any changes in the state of the UK background concentrations but won't give process understanding
 - A system needs to be developed to quantify dispersion of NH₃ in response to any incident in the future

Thank you

For more information please contact: Marsailidh Twigg (<u>sail@ceh.ac.uk</u>)

UK Centre for Ecology & Hydrology