Processes of ammonia surface-atmosphere exchange in different ecosystems across the U.S

Nebila Lichiheb^{1,2}

Nebila.Lichiheb@noaa.gov

¹NOAA, ARL, Atmospheric Turbulence and Diffusion Division, Oak Ridge, TN 37830. ²Oak Ridge Associated Universities, Oak Ridge, TN 37830, USA.

> ADMLC seminar, UK October 4, 2023

NOAA Air Resources Laboratory 1

Background: Atmospheric ammonia (NH₃)

- Ammonia (NH₃) is a key component of the biogeochemical cycle: It is the most challenging reactive nitrogen compound due to its bidirectionality.
- The United States is one of the world's leading producers and consumers of NH_3 :
 - 82 % of all U.S. NH₃ emissions derive from the agricultural sector (US EPA, 2020);
 - Fires account for 11%, mobile source account for 2% of NH_3 emissions in the U.S (US EPA, 2020)....

U.S. annual mortality due to weather related causes

- NH₃ participates in the formation and growth of PM_{2.5}.
- Air Quality is a costly and deadly issue affecting millions of people in the U.S. and billions globally.
- The monitoring of atmospheric NH₃ remains limited. Large uncertainties in model forecasts.
- The goal is to explore the future directions of air-surface exchange modeling for NH₃ and the measurements needed to facilitate model improvements.

Two-layer NH₃ compensation point model: SURFATM-NH₃ (Personne et al., 2009)

Collaboration with UMR ECOSYS AgroParisTech-INRAE (Paris, France)

Two-layer NH₃ compensation point model: SURFATM-NH₃ (Personne et al., 2009)

Collaboration with UMR ECOSYS AgroParisTech-INRAE (Paris, France)

NH₃ exchanges over an agricultural ecosystem

Collaboration with University of Illinois at Urbana-Champaign (Urbana, IL)

Objective: Quantify & investigate above canopy NH₃ concentrations and fluxes from fertilized corn field in the Midwestern USA.

Location: Energy Farm at the University of Illinois at Urbana-Champaign, IL.

Study period: From 6 May to 31 July, 2014

Fertilizer: Urea Ammonium Nitrate with Urease inhibitor injected to a depth of 10 cm on May 6, 2014 (DOY 126).

REA sampling system

Relaxed Eddy Accumulation (REA)

Concept: quantify total number molecules in updraft & downdraft at a fixed point to determine flux for a scalar.

$$\overline{F_{REA}} = \beta \, \sigma_w \big(\overline{C^{\uparrow}} - \overline{C^{\downarrow}} \big)$$

 $\overline{F_{REA}}$ is the vertical turbulent flux, β is the REA coefficient, σ_w is the standard deviation of the vertical wind velocity, C is concentration, \uparrow and \downarrow denote up- and down-draft measurements...

Flux-gradient (FG)

Concept: determines emission and deposition fluxes from vertical gradient of air concentrations.

$$F_{FG} = -K_H \left(\frac{\Delta C_{NH_3}}{\Delta z} \right) = F_H \left(\frac{\Delta C_{NH_3}}{\Delta T} \right)$$

FG sampling system

NOAA Air Resources Laboratory 5

 F_{FG} is the flux from FG, K_{H} is the eddy diffusivity for sensible heat, ΔC_{NH3} is the difference in NH₃ concentration between two measurement heights (Δz), ΔT is the corresponding difference in temperature.

NH₃ exchanges over an agricultural ecosystem

> Results

(Nelson, et al., 2019)

The FG technique enabled high temporal resolution of NH₃ fluxes: the detection of the NH₃ peak just after the fertilization, the detection of deposition fluxes.

Atmospheric NH₃ measurements over a coastal ecosystem

Collaboration with Delaware National Estuarine Research Reserve (Dover, DE) & University of Delaware (Newark. DE)

Objective: Advance our process-level understanding of NH_3 air-surface exchange over a coastal salt marsh along the Mid-Atlantic U.S.

Location: The St Jones Reserve, Dover, DE.

Study period: From 21 June to 20 July 2018.

CRDS system

Radiello passive sampler

- Continuous NH₃ concentrations were measured with Cavity Ringdown
 Spectroscopy (CRDS) system.
- A week-long sampling period of NH_3 concentration measurements by passive samplers (AMoN, National Atmospheric Deposition Program).
- Meteorological measurements provided from the St. Jones Ameriflux site (US-StJ) hosted by the University of Delaware.

Schematic of the experimental set-up

The virtual chamber statistical concept (Hicks et al., 2021)

Collaboration with University of Tennessee (Knoxville, TN)

Objectives

- Propose a new statistical approach to provide a solution to estimate surface fluxes in continuing strongly stable conditions, such as are often encountered over land at night and over wetlands in daytime.
- Estimate the average diurnal cycle of NH₃ fluxes at the St Jones reserve site.

Schematic illustrations of the virtual chamber method

Assuming a solid lid across the top of the tidal marsh, extending from edge to edge at height (**h**). If the flux from the surface of NH_3 (\mathbf{F}_{NH3}) was constant, the concentrations of NH_3 (\mathbf{C}_{NH3}) within the confined layer would increase as determined by the wind speed (**u**) and the distance from the upwind edge (**x**).

$$F_{NH_3} = C_{NH_3}h(u/x)$$

Atmospheric NH₃ measurements over a coastal ecosystem

Results (Lichiheb et al., 2021)

Average diurnal cycle of NH₃ fluxes as a function of time

NH₃ concentrations measured using the CRDS and the passive Radiello samplers

Tidal depths have a significant effect on NH_3 emissions: the highest NH₃ fluxes were observed at low tide when more soil/island was exposed.

Salt marshes could be a sink of NH₃ via atmospheric deposition or a source of NH₃ in anaerobic and aerobic conditions.

Average diurnal cycle of NH₃ fluxes as a function of tidal depth

Bi-directional exchanges of NH₃ over a deciduous forest canopy

Collaboration with U.S. EPA (Durham, NC)

Objectives: Advance Southern Appalachian Nitrogen Deposition Study (SANDS): Combination of measurements and modeling to quantify nitrogen air-surface fluxes and characterize processes.

Location: U.S. Forest Service, Coweeta Hydrologic Laboratory, southwestern NC.

Study period: From May 21 - June 9, 2015; August 6 – 25, 2015; September 9 – 26, 2015; April 19 – May 11, 2016; and July 13 – August 3, 2016.

<u>Air</u>: NH₃ concentration (denuder and MARGA data), wind speed, friction velocity, sensible and latent heat flux, chemical fluxes, solar radiation, rainfall, air temperature.

<u>Canopy:</u> height, LAI, NH_3 emission potentials, green leaf and litter chemistry.

<u>Soil:</u> temperature, moisture, pH, heat flux, soil chemistry, NH_3 emission potentials.

- Initialization of SURFATM-NH₃ model
 - Canopy height: h_c=35m
 - Measurement height: H= 43 m
 - Total canopy LAI = 4.6
 - Initial focus: July 20-30, 2016
 - Measured NH₃ concentrations: denuder and MARGA
 - Implemented emission potentials (Γ):
 - > Stomatal emission potential: $\Gamma_s = 40$
 - > Ground/Litter emission potential: $\Gamma_g = 200$

NOAA Air Resources Laboratory 10

Bi-directional exchanges of NH₃ over a deciduous forest canopy

> Results

Simulation of the different sources of NH₃ fluxes with SURFATM-NH₃ model

Comparison of measured and modeled NH₃ fluxes

- Dominance of the cuticular pathway, resulting in only deposition fluxes during almost the whole study period.
- SURFATM-NH₃ can reasonably reproduce NH₃ deposition fluxes.
- Measured NH₃ emission fluxes during specific meteorological conditions are not well reproduced by the model.

Bi-directional exchanges of NH₃ over a deciduous forest canopy

Effect of leaf wetness formation and evaporation

- The evaporation of leaf surface wetness (dew droplets/rain) in the morning leads to higher NH₃ air concentrations.
- There is a striking dependence on the wetting source of the leaf surface. The higher emission flux (20.5 ng m⁻² s⁻¹) occurred after a rain event (1.5 mm) on July 24th.
- Dew pH is generally higher than rain pH. The decreased pH caused by rain increases NH₃ uptake by leaf surface water. This led to a high emission flux of NH₃ after complete dryness of the leaf surface water film.
- Understanding the role of leaf surface adsorption and desorption processes is fundamental to better describe the processes of bi-directional NH₃ exchange.

Spatial and temporal NH₃ variations in urban and suburban areas

Collaboration with Yale University and Princeton University

- Ongoing NH₃ concentration measurements within the Atmospheric Emissions and Reactions Observed from Megacities to Marine Area (AEROMMA) campaign.
- On-road NH₃ concentrations using a mobile platform including an open-path NH₃ sensor in NYC and at the Yale Coastal Field Station (YCFS) (Guilford, CT).
- Ground- based measurements using the CRDS system (G2103, Picarro) at the (YCFS) (Guilford, CT).

Meteorological tower mounted on the boardwalk at the YCFS

NOAA ARL mobile measurement platform

Experimental setup of the open-path NH₃ sensor on the mobile platform at Princeton University

Future work

- Analyze the long-term real-time atmospheric NH₃ concentration measurements collected at the YCFS to assess the seasonal variability and understand the Nitrogen dynamics in wetlands.
- Analyze the on-road NH₃ concentration measurements to better understand the spatial and temporal NH₃ variations in urban and suburban areas, and to calculate NH₃ emission factors (EF).
- Develop micrometeorological techniques to accurately measure NH₃ fluxes in complex terrain (e.g. wetland ecosystems).
- Adapt SURFATM-NH₃ model in order to describe the exchange of NH₃ between the atmosphere and the aquatic surface in coastal ecosystems: develop a coastal biogeochemical (CBG) model and validate it using field measurements obtained in this project.
- Implement a parameterization describing the dew formation and evaporation processes.
- Compare multilayer model with big-leaf model results to propose improvements in the existing parameterizations.

Thank you for your attention

Nebila.Lichiheb@noaa.gov

Acknowledgments

- Dr. LaToya Myles, Mr. Bruce Hicks, Dr. Rick Saylor, Mr. Mark Heuer: NOAA/ARL (Oak Ridge, TN).
- Dr. Xinrong Ren, Dr. Winston Luke, Mr. Phillip Stratton, Mr. Paul Kelley: NOAA/ARL (College Park, MD).
- Dr. Erwan Personne: UMR ECOSYS INRA-AgroParisTech (Paris, France).
- Dr. Sotiria Koloutsou-Vakakis, Dr. Mark Rood: University of Illinois at Urbana-Champaign (Urbana, IL).
- Dr. Kari St. Laurent: Delaware National Estuarine Research Reserve (Dover, DE).
- Dr. Rodrigo Vargas : University of Delaware (Newark. DE).
- Dr. Neal Eash: University of Tennessee (Knoxville, TN).
- Dr. John Walker: U.S. EPA (Durham, NC).
- Dr. Drew Gentner: Yale University (New Haven, CT).
- Dr. Mark Zondlo: Princeton University (Princeton, NJ).

