

Modelling dry deposition in an operational Lagrangian model

Helen Webster

© Crown Copyright 2020, Met Office

Predicts the atmospheric transport and deposition to the ground surface of airborne substances

- Offline Lagrangian model
 - Eulerian sub-model
- Used operationally
- Developed following 1986 Chernobyl accident
 - Now has a wide range of atmospheric dispersion applications
 - Gases & particles... and even insects

Dry deposition parameterisation

- Uses the concept of a deposition velocity v_d
- Flux of material to ground is proportional to concentration
 - $F = v_d C$
- Dry deposition

•
$$\Delta m = m \left[1 - \exp\left(-\frac{v_d}{z_s} f \Delta t\right) \right]$$

• $0 \le f \le 1$, fraction of timestep $z \le z_s$

- All Lagrangian particles below the deposition height z_s dry deposit
 - Default z_s boundary layer height

Deposition velocities

Increasing complexity

User specified

- Simple
- v_d fixed
- Specie dependent
- Based on literature reported deposition values

Resistance analogy

•
$$v_d = \frac{1}{R_a + R_b + R_c}$$

- Meteorological dependency
- Fixed speciedependent surface resistance

Land use dependent scheme

- Resistance analogy
- Varying surface resistance dependent on land-surface
- Selected species

Resistance analogy

 Aerodynamic resistance depends on stability and roughness length

$$R_a = \frac{1}{ku_*} \left[\ln \left(\frac{z_r + z_0}{z_0} \right) - \Phi \right],$$

where

$$v_d = \frac{1}{R_a + R_b + R_c}$$

 Laminar resistance depends on friction velocity

•
$$R_b = \frac{1}{8u_*}$$

Meteorological dependency

Land-use dependent scheme

• Uptake at the ground is strongly dependent on the landsurface type & properties

STOCHEM parameterisations

ozone, nitric oxide, nitrogen dioxide, nitric acid, PAN, hydrogen peroxide, methane, carbon monoxide, hydrogen, formaldehyde, sulphur dioxide, ammonia

- Requires additional surface and plant information
 - e.g., stomatal conductance, leaf area index
 - Ancillaries: fixed (e.g., land use) or monthly (e.g., LAI)
 - NWP data: varying with time (e.g., stomatal conductance)

STOCHEM parameterisations

ozone, nitric oxide, nitrogen dioxide, nitric acid, PAN, hydrogen peroxide, methane, carbon monoxide, hydrogen, formaldehyde, sulphur dioxide, ammonia

 Deposition to vegetation occurs mainly via the stomata

$$\frac{1}{R_c} = \frac{1}{R_{stom} + R_{mes}} + \frac{1}{R_s} = \frac{g_c}{2.4} + \frac{1}{R_s}$$

 g_c - Stomatal conductance

 Mesophyllic resistance is – not negligible

land-sea effect: less deposition over water than over land

_and-surface	Land-surface	Standard surface R
index	type	resistance (s m ^{-1}) rs
1	Broadleaf trees	225
2	Needleleaf trees	225
3	C3 (temperate) grass	400
4	C4 (tropical) grass	400
5	Shrubs	600 (steppe), 1200 (tundra)
6	Urban	1200
7	Inland water	2600
8	Bare soil	1200 (steppe and tundra)
9	Land-ice	3500

Table 3: Standard surface resistances for nitrogen dioxide

STOCHEM parameterisations

ozone, nitric oxide, nitrogen dioxide, nitric acid, PAN, hydrogen peroxide, methane, carbon monoxide, hydrogen, formaldehyde, sulphur dioxide, **ammonia**

- Deposits to vegetation via the stomata and the cuticle
- The dry deposition rate depends on the wetness of the leaf surface
- The cuticular resistance parameterisation has a dependence on surface temperature (T_s) and canopy water (cw)

$$\boxed{\frac{1}{R_c} = \frac{1}{R_{stom}} + \frac{1}{R_{cuticle}} + \frac{1}{R_s} = \frac{g_c}{0.97} + \frac{1}{R_{cuticle}} + \frac{1}{10}}$$

$$R_{cuticle} = \begin{cases} 1000.0, & T_s < 268 \text{ K} \\ 200.0, & 268 \text{ K} \le T_s \le 272 \text{ K} \\ 10.0, & T_s > 272 \text{ K} \text{ \& } cw > 0.25 \text{ mm} \\ 5.0 \log [T_s - 271.15] \exp \left[\frac{100.0 - rh}{12.0}\right], & T_s > 272 \text{ K} \text{ \& } cw \le 0.25 \text{ mm} \end{cases}$$

Near-source modelling

- Material is not well mixed within the boundary layer
- User option to specify a lower deposition height z_s
 - Noisy deposition fields (fewer Lagrangian particles)
 - Increased run-time (more Lagrangian particles required)

Model validation of dry deposition

- Difficult
- Lack of deposition observations
 - Often long-term measurements
 - Total deposition (including wet)
 - For soluble species, wet deposition often dominates
- Often validated indirectly via air concentrations
 - Uncertainties in emissions, transport, dispersion, chemistry, wet deposition, etc.
 - Tracer experiments: Kincaid, ETEX, CAPTEX / ANATEX
 - Events: air quality, fires, volcanic eruptions, radiological incidents, etc.

Validation

	Contents lists available at ScienceDirect	ATMOST ENVIRO
	Atmospheric Environment	3
ELSEVIER	journal homepage: www.elsevier.com/locate/atmosenv	

Atmospheric Environment 119 (2015) 131-143

Evaluation of the performance of different atmospheric chemical transport models and inter-comparison of nitrogen and sulphur deposition estimates for the UK

A.J. Dore ^{a,*}, D.C. Carslaw ^b, C. Braban ^a, M. Cain ^{c,4}, C. Chemel ^e, C. Conolly ^f, R.G. Derwent ^g, S.J. Griffiths ^h, J. Hall ¹, G. Hayman ^J, S. Lawrence ^c, S.E. Metcalfe ^k, A. Redington ¹, D. Simpson ^{m,n}, M.A. Sutton ^a, P. Sutton ^o, Y.S. Tang ^a, M. Vieno ^a, M. Werner ^p, J.D. Whyatt ^q

CrossMark

Chernobyl

Clark & Smith, 1988

Future work - UKCA

Geosci. Model Dev., 13, 1223–1266, 2020 https://doi.org/10.5194/gmd-13-1223-2020 © Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License. Geoscientific Model Development

Description and evaluation of the UKCA stratosphere–troposphere chemistry scheme (StratTrop vn 1.0) implemented in UKESM1

Alexander T. Archibald^{1,2}, Fiona M. O'Connor³, Nathan Luke Abraham^{1,2}, Scott Archer-Nicholls¹, Martyn P. Chipperfield^{4,5}, Mohit Dalvi³, Gerd A. Folberth³, Fraser Dennison^{6,4}, Sandip S. Dhomse^{4,5}, Paul T. Griffiths^{1,2}, Catherine Hardacre³, Alan J. Hewitt³, Richard S. Hill³, Colin E. Johnson³, James Keeble^{1,2}, Marcus O. Köhler^{1,7,b}, Olaf Morgenstern⁶, Jane P. Mulcahy³, Carlos Ordóñez^{3,c}, Richard J. Pope^{4,5}, Steven T. Rumbold⁸, Maria R. Russo^{1,2}, Nicholas H. Savage³, Alistair Sellar³, Marc Stringer⁸, Steven T. Turnock³, Oliver Wild⁹, and Guang Zeng⁶

Implementation of UKCA chemistry scheme into NAME

- · Includes dry deposition scheme
 - Uses resistance analogy
 - · Similar to land-use dependent scheme
 - · Widely used
 - Frequent updates (e.g., recently SO₂, O₃)

Questions?

www.metoffice.gov.uk

© Crown Copyright 2020, Met Office